
1178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 3, MARCH 2008

Reduced-Complexity Soft MIMO Detection Based
on Causal and Noncausal Decision Feedback

Yong Li and Jaekyun Moon, Fellow, IEEE

Abstract—We present a reduced-complexity soft detection
(RCSD) scheme geared to multiple-input multiple-output
(MIMO) systems with spatial domain multiplexing leading to
layered space-time or space-frequency architecture. The proposed
algorithm relies on a trellis representation of the MIMO signals
and a subsequent formulation of constrained-depth maximum
a posterior (MAP) detection in conjunction with soft decision
feedback (SDF). Decision feedback is broken into causal and
noncausal parts in an effort to maximize the observation window
while maintaining a reasonable computational load. Two varia-
tions of RCSD are proposed to utilize the noncausal information in
different ways. Analysis based on mean squared error (MSE) and
log-likelihood ratio (LLR) associated with symbols in different
stages of the trellis is done to develop insight into error propagation
in the RCSD algorithm, as well as to compare the quality of the
soft information obtained by the two RCSD variants. Error-rate
simulations are conducted in the context of turbo-like iterative
demapping and decoding (IDD). The resulting performance and
required complexity are compared with those of maximum a
posterior (MAP) detection, soft sphere detection (SD), as well as
the Turbo-BLAST processing scheme. We observe favorable per-
formance/complexity tradeoffs with the proposed soft detection
scheme for a number of modulation/channel scenarios.

Index Terms—Iterative Decoding and Demodulation (IDD), mul-
tiple-input multiple-output (MIMO), reduced complexity soft de-
tection (RCSD), soft decision feedback (SDF), spatial multiplexing.

I. INTRODUCTION

I T is well known that in rich-scattering environments mul-
tiple-input multiple-output (MIMO) communication sys-

tems provide much higher spectral efficiency than single-input
single-output systems [1]. However, with a large number of
antennas and/or high-order modulation methods needed to
achieve very high data rates, optimal maximum a posterior
(MAP) detection [or maximum likelihood (ML) detection if
equally probably symbols are assumed] is often impractical
due to high complexity. Therefore, developing a reduced-com-
plexity detection algorithm without significant performance
degradation is a critical issue in the receiver design for MIMO
systems.

A popular early MIMO architecture is the Bell Laborato-
ries’ layered space-time (BLAST) system. The original archi-
tecture was proposed in [1] and is known as diagonal BLAST
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(D-BLAST). A simplified version based on spatial multiplexing
known as vertical BLAST (V-BLAST) was proposed in [2], and
a detection algorithm has also been provided based on three el-
ements: linear interference nulling, successive interference can-
cellation (SIC), and optimized ordering. The idea of SIC is also
well established in multiuser detection (see [3] and [4], for ex-
ample) and can be viewed as decision feedback equalization
(DFE) in spatial domain [5]. Some variations of this algorithm
have been proposed utilizing either the zero-forcing (ZF) [6]
or minimum mean-square error (MMSE) [7] nulling criterion.
Other approaches that alleviate the computational burden of op-
timized ordering have also been proposed [8]–[10].

Although an appropriate ordering assures that the detection
process starts from the “best” symbol in terms of signal-to-noise
ratio (SNR), in BLAST-type detection the decisions that are fed
back always come from “weaker” symbols with a lower order
of diversity, often resulting in catastrophic error propagation.
Different strategies have been investigated to alleviate this
effect, such as parallel detection [11], two-directional QR de-
tection [12], and group detection [13], [14]. Making use of the
lattice property of the quaternary phase-shift keying (QPSK)
and quadrature-amplitude modulation (QAM) modulations,
sphere decoding ([15]–[20]) performs the closest-point search
to approximate MAP detection, and a lattice reduction tech-
nique [21], [22] can be employed to aid the detection process.

Most techniques described above are not directly ap-
plicable to coded systems composed of a bit-to-symbol
mapper/demapper and the outer encoder/decoder. Such coded
systems usually employ iterative demapping and decoding
(IDD) [23], sometimes referred to as Turbo-BLAST [24],
which requires the detector or demapper to provide reliable
soft information rather than simple hard decisions to the outer
decoder. Accordingly, a need for soft-input soft-output (SISO)
detectors arises. One approach is to modify the sphere decoding
to keep a list of candidate output sequences instead of just
the “nearest” word in order to generate the soft information
[25], [26]. The soft outputs will be sufficiently reliable when
the search radius is chosen large enough, although a larger
radius implies higher decoding complexity. Some other sub-
optimal approaches, based on tree search [27], semidefinite
programming (SDP) [28], probabilistic data association (PDA)
[29], etc., are shown to achieve similar performance to sphere
decoding with comparable complexity. Another possible ap-
proach, which has not been widely applied to MIMO detection,
comes from the idea of reduced-state sequence estimation
(RSSE) for intersymbol interference (ISI) channels. These
complexity reduction algorithms are based on either a truncated
channel impulse [30] or set partitioning of the symbol con-
stellation [31] or both [32]; these schemes all rely on decision

1053-587X/$25.00 © 2008 IEEE



LI AND MOON: REDUCED-COMPLEXITY SOFT MIMO DETECTION 1179

feedback to resolve ambiguity caused by the residual channel
impulse response or the presence of multiple symbols within a
partition. A “survivor path” [33] of past hard-decisions needs
to be kept for each state in the reduced trellis. There also exist
SISO versions of reduced-state algorithms, as discussed in [34]
and [35], for example.

In this paper, we shall focus on the derivation of a re-
duced-complexity soft detection (RCSD) algorithm well suited
to MIMO detection, based on the constrained-depth1 approxi-
mation of the MAP detection [36]. The proposed suboptimal,
low-complexity soft detection scheme is based on trellis repre-
sentation of the MIMO signals and a subsequent formulation
of constrained-depth MAP detection as well as the use of soft
decision feedback (SDF). Decision feedback is applied based
on decomposition of the MIMO interference into causal and
noncausal parts. The causal interference is in turn broken into
the state-dependent portion and the past contribution. The
complexity of the proposed algorithm depends mainly on the
size of the trellis, which is in turn set by the span of interfer-
ence associated with a prescribed, parameterized number of
preceding interference terms. The overall decision depth, on
the other hand, coincides with the interference span covering
both the state-dependent portion and the noncausal part. Two
different variations are suggested for handling the noncausal
interference, based on a priori information or hard decisions,
respectively. Error rate simulations are conducted based on the
IDD procedure on different modulation schemes. The resulting
performance and required complexity are compared with those
of MAP detection, soft Turbo-BLAST processing, as well
as sphere detection (SD). Excellent performance/complexity
tradeoffs were observed with the proposed soft detection
scheme for both suggested RCSD variations.

This paper is organized as follows. Section II formulates the
MIMO signals in a trellis form and derives the new RCSD algo-
rithm with two variations. Section III conducts analysis based
on mean-square error (MSE) and log-likelihood ratio (LLR) for
symbols at different stages of the trellis. In Section IV simula-
tions are done to verify the performance behavior of RCSD ex-
pected from the analysis, and the tradeoff of the resulting perfor-
mance and required complexity is compared between the pro-
posed RCSD and some existing detection schemes. Finally, con-
clusions are drawn made in Section V.

II. PROPOSED RDSD

The system block diagram is shown in Fig. 1, which depicts
a bit-interleaved coded modulation (BICM) scheme with spa-
tial multiplexing (SM) and IDD processing. The OFDM oper-
ations at transmitter (TX) and receiver (RX) are composed of
inverse fast Fourier transmission (IFFT) and FFT as well as
cyclic prefix (CP) insertion/removal. In flat fading channels, the
OFDM operations will be skipped. The preprocessing filter is
to shape the MIMO channel to be lower-triangular (or upper-
triangular) for the convenience of layer-based detection. The

1“Depth” refers to the number of adjacent layers that the detector looks into
for the current-layer detection. It is in the sense of the spatial domain versus the
time-domain. The same will be true for any reference of “causal” or “noncausal”
part of interference.

Fig. 1. Bit-interleaved spatial multiplexing scheme with IDD processing.

IDD process is performed with the extrinsic information ex-
changed between the MIMO detector and the error correction
code (ECC) decoder.

Consider an antenna configuration ( transmit and
receive antennas). While the techniques discussed in this

paper can definitely be applied to unbalanced cases, we assume
that after proper signal decomposition,2 we effectively have an

antenna configuration, where is the minimum of
the numbers of transmit and receive antennas. The well-known
vector MIMO channel can be rewritten in a lower-triangular
form as

(1)

where is the observation signal at the th receive antenna, is
the modulated symbol transmitted by the th transmit antenna,
and represents the effective channel response of the com-
munication link between the th transmit antenna and the th
receive antenna. denotes the post-filtering noise for the th
receive antenna, and is assumed to be Gaussian with zero-mean
and variance . Note that could include some residual in-
terferences after MMSE filtering, but for simplicity here is
always assumed to be the noise variance associated with the
system SNR. The received signals in (1) are accurately rep-
resented by a tree, since there is no merging of signal paths
until the last layer. Optimal MAP/ML detection is based on pro-
cessing all paths of the tree ( is the symbol constellation
size), and is not practical when and/or is large. However,
as will be shown in the following, when the interference length
is truncated, low-complexity algorithms can be applied based
on a trellis representation of the received signals in a MIMO
system.

For a given layer , we can make a soft estimation on the
symbol -layer back, , based on , the collection of obser-
vation samples through , plus , the observation sam-
ples through -layer forward. In other words, we aim to com-
pute or estimate the constrained-depth a posteriori probability
(APP) .

The state and state transition of the trellis representing MIMO
signals can be defined respectively as

(2)

2For ZF, the QR decomposition will result in the exact form of (1); for MMSE,
there is noncausal interference, but the causal form of (1) can still be assumed
at the receiver by considering the residual interference as part of the noise.
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Fig. 2. Reduced trellis for BPSK, � = 2 and 5 � 5 antenna configuration.

where represents the collection of symbols from layer
to layer . For , we have a spatially varying

trellis with the state at the th layer given by ( is a
dummy node, where all trellis paths originate). See Fig. 2 for the
resulting trellis corresponding to BPSK, and . It is
seen that the state transition is defined by extending the state for
one more layer, thus all transitions originating from the same
state differ only in one constellation symbol.

The joint probability density function (pdf) is
obtained as

(3)

for , where the sum is over all state tran-
sitions associated with the given . In computing the joint
probability density for the last symbols through
using (3) (i.e., when ), it is understood
that and whenever . The
joint probability density , the “causal part” which only
depends on the observation samples , can be computed re-
cursively, as will be described next. Exact computation of the
“noncausal part” is hard, but can be reasonably
approximated based on the available a priori information as well
as decision feedback of the already detected symbols.

A. Computing

Based on the definitions in (2), we have

(4)
where the sum is over all transitions that are connected
to the particular transition , is initialized to
1, and the a priori probability is to be updated at each
iterative stage in the case of IDD. Let us now focus on the likeli-
hood function defined as . While a state
transition is designed to collect only , the observation

does in general depend on all symbols through . This issue
can be resolved by writing the likelihood function as follows:

(5)

for ; for , we simply have
(see Fig. 2). It can be seen that the likelihood

function is a weighted sum of Gaussian pdfs. Exact computa-
tion of need to enumerate all combinations of , which
will considerably increase the computational load.

One effective way of reducing computation is to force an
approximation

(6)

where represent soft-decision symbols (average deci-
sions as will be discussed shortly) and the subscript empha-
sizes that the noise variance is now adjusted to account for the
quality of the soft decisions. To be more clear, we are making
an assumption that is a Gaussian pdf with some mean
and variance , which depend on the soft decisions. Following
derivation steps similar to those in [37], it can be shown that the
“total mean” and the “total variance” are

(7)

for , where , is the variance
of additive noise and . It is implied
that and for or . Since the proba-
bilities of s are not available, we make approximations

, and
for based on a posteriori probabilities
available from the previous detection layers during the current
IDD iteration. Note that another underlying approximation here
is that . The first
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sum in the right hand side of the first equation in (7) repre-
sents interference from the distant past, whereas the second sum
corresponds to the more recent interference terms implied in
the given state. The state is not defined when (i.e., no
trellis), in which case the scheme simply reduces to essentially
symbol-by-symbol detection even when .

We also note that for , the proposed scheme is to
some extent similar to the SIC algorithm in [38] which also re-
lies on the Gaussian approximation of the residual interference
plus noise. The SIC algorithm of [38] conducts full MAP detec-
tion for the first layers and performs layer-by-layer detection
for subsequent layers. In contrast, our scheme treats all layers
more evenly with a consistent depth of layers, based on which
a trellis is constructed with a constant number of state transi-
tions. We also extend the depth to layers ahead to enhance
performance.

B. Computing

Similar to the idea implied in (6), which assumes that the
summation over all combinations of possible symbols can be
approximated by a single term as long as a particular decision
(soft or hard) for this symbol set has been made, the noncausal
part can be expressed as

(8)

where the approximation is the result of replacing the random
variables and with the deterministic variables

and , and each term in the product in the last line
is a single Gaussian pdf, i.e.

where the mean and variance can be obtained as

(9)

Note that are the soft-decision symbols obtained from
detection of the previous layers as in (7), while represent
either hard or soft decisions that are not yet available. In the
following, we discuss two possible ways to obtain based
on the available information.

1) Based on a Priori Information: In this scheme are
obtained in a way similar to how is obtained: we average
over all possible s according to the a priori probabilities for

, i.e.

(10)

for , where represents the a priori prob-
ability estimation from the last iteration stage in IDD. This
method shall be referred to as RCSD1.

2) Based on Hard Decision: Another way to obtain is
to choose a particular pattern that maximizes (8), i.e.

(11)

When , can be easily obtained by “quantizing”
to its nearest neighboring symbol, requiring little arithmetic op-
erations; As grows, the maximization in (11) over all possible

s can get computationally intense for high-order modula-
tions. However, since only hard decisions for are required,
it can be conveniently found by the conventional SD method
(for example, see [16]). Although this represents added com-
plexity and entails same implementation issues of conventional
hard-decision SD [18], we are only interested in small s (in
practice ) for which the expected complexity is
[17], much lower than the overall complexity of soft-decision
SD. We shall call the resulting scheme RCSD2, which becomes
identical to RCSD1 for .

In RCSD2, is chosen based on and may take on dif-
ferent values for different , while in RCSD1 is predeter-
mined by a priori probabilities and so is uniform irrespective of

s. Furthermore, s in RCSD2 are hard decisions which are
chosen from the symbol constellation, so they are not random
variables and we have for in (9). As will
be shown below, RCSD2 is better than RCSD1 in the cases of
high-order constellations (e.g., 16/64-QAM) that possess a large
number of distinct states.

C. Summary of the Algorithm

• Initialization : ,

• For : , ,
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• For : , ,
1) Compute

with , , for .
2) Compute according to (3), so obtain

, update , and then go to
1).

Note that the RCSD algorithm is derived based on the signal
form of (1), regardless of whether it is obtained based on the ZF
or MMSE criterion. Although MMSE requires higher arithmetic
complexity due to extra matrix inversion or suboptimal scalar
inversion [24], it usually achieves better performance than ZF.
In the sequel, we shall assume MMSE design.

III. ANALYSIS AND COMPARISON

A. Error Propagation Analysis

In this section, the MSE of symbols in each layer will be
calculated for RCSD with different parameters, to visualize
the error propagation effect due to decision feedback. Based on
the signal model in (1), the MSE associated with each layer is
defined as

(12)
where , denotes the actually trans-
mitted th-layer symbol, and s are the soft symbol decisions
for previously detected layers. is the th-layer symbol that
would be chosen if hard decisions had been made at this stage,
based on the pdf obtained in (3), i.e.

(13)

assuming for the sake of simplicity here. It is seen that
the MSE at each layer is composed of the detection error of the
current-layer symbol, and the error due to feedback of incorrect
previous-layer symbols. Note that the last layer symbols are
jointly detected, so the detection of does not rely on decision
feedback of . That is why in (12) the errors associated with

are not included in for .
If all past decisions in (12) are precise, i.e., , we will

have , so the MSE of all layers will be
roughly the same. But with the presence of fading and noise,
there is always a chance that , and the error on pre-
vious symbols will “propagate” to subsequent layers and affect
detection at those layers. In Fig. 3, the average MSEs of RCSD
schemes with different s are shown for QPSK and 16QAM.
Each plot is obtained for a particular , which is the ratio
of average energy per information bit to one-sided noise power
spectral density. The average MSEs of BLAST and MAP de-
tection are also shown as references. First, compared to BLAST

Fig. 3. MSEs of different layers for QPSK and 16 QAM, 4 � 4.

detection, error propagation in RCSD with is consider-
ably less; its MSE accumulates much more slowly as the detec-
tion process moves from layer-1 to layer-N. This is due to the
improvement of SDF over hard decision feedback (HDF). Sec-
ondly, for a larger error propagation is reduced further, due to
the fact that both and become more reliable when more
layers are jointly considered. For RCSD with , error prop-
agation is already negligible, and the resulting MSE is nearly
indistinguishable from that of MAP detection.

B. Comparison of RCSD1 and RCSD2 Based on Mutual
Information

It has been seen in Section II-B that two RCSD schemes pro-
posed in this paper are distinguished in the way they utilize the
non-causal layer information for . This could result in dif-
ferent reliability of the soft outputs.

In general, the reliability of the soft bit information at
demapper’s output can be characterized by the mutual informa-
tion (MI) between the coded bit and its corresponding LLR

:

(14)

where is the number of coded bits, i.e., the codeword length,
and the approximation is usually used in practice without
knowing the actual distribution of , as argued in [39].

MI has been utilized in the extrinsic information transfer
(EXIT) chart [40], where MI at the input/output of both
demapper and decoder is plotted versus the number of itera-
tions for a given SNR, to analyze the convergence behavior
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Fig. 4. Bitwise MI I(� ; c) at the demapper’s output for QPSK, 4� 4, RCSD
with � = 0, � = 2.

Fig. 5. Bitwise MI I(� ; c) at the demapper’s output for 16 QAM, 4 � 4,
RCSD with � = 0, � = 2.

of some concatenation schemes. In our case, the EXIT chart
is less useful, since the convergence behavior for a particular
SNR is not much different between the two RCSD schemes, at
least not in a very obvious way. To better serve our purposes,
namely, to better visualize the evolution of soft bit information
in two RCSD schemes, in Fig. 4 and Fig. 5 we depict the MI
at demapper’s output versus SNR with a sufficient number of
iterations (5 iterations here), for both QPSK and 16QAM cases,
respectively. These figures reflect the overall reliability of the
soft information generated by RCSD1 and RCSD2.

It is seen that in QPSK RCSD1 consistently generates more
reliable soft information than RCSD2, while in 16QAM the re-
liability of soft information generated by RCSD1 starts to drop
beyond some SNR value. This is because RCSD1 heavily relies
on the accuracy of the noncausal symbol estimates, which is
harder to achieve for higher-order modulations. RCSD2, on the
other hand, can still work with less accurate estimates as long
as (11) is satisfied. This will also be verified by error rate sim-
ulation results next. It is safe to say that RCSD2 is expected to
achieve better performance than RCSD1 with high-order mod-
ulation methods.

C. Complexity Analysis

In this section, we consider the proposed RCSD scheme,
as well as Turbo-BLAST, sphere detection/decoding (SD).
Basically, Turbo-BLAST employs a layer-by-layer detection
with soft cancellation based on a priori information feedback
from the outer decoder. Therefore, it has a similar complexity
as RCSD with , since for each layer soft bit information
is generated in the same manner, i.e., symbol estimation fol-
lowed by symbol-to-bit conversion. However, in Turbo-BLAST
MMSE filtering needs to be performed every iteration in order
to perform the soft cancellation [24]. Unless some low-com-
plexity schemes are used [41], [42], MMSE processing requires

a matrix inversion per iteration and therefore is quite complex.
On the other hand, in RCSD prefilter processing (based on ZF
or MMSE) only needs to be done once at the first iteration,
since the purpose here is to shape a lower-triangular signal
model as (1), instead of trying to cancel the interfering symbols
directly.

It is well known that the arithmetic complexity associated
with the closest-point search in hard SD is asymptotically sub-
ject to an expected complexity requirement of at high
SNRs [17], regardless of . However, in coded modulations,
soft SD cannot just do the closest-point search, but must also
keep a sufficiently large list of candidate symbol sequences to
generate soft information for the decoder [25]. As a result, the
search radius can not be reduced during the search as in hard
SD, and so the search complexity of soft SD usually grows ex-
ponentially with . Although the search effort is needed only
once at the first iteration, the entire candidate list still has to be
examined through to update the soft bit information at each fol-
lowing iteration. Therefore, the “enumeration complexity”, de-
fined as the candidate list size, denoted , in the case of SD
or the number of transition edges per layer in the RCSD trellis in
the case of RCSD, is a more relevant complexity measure than
the one-time search complexity in coded systems with IDD, and
is more likely to become the bottleneck especially for high
and/or .

In summary, the enumeration size per-layer per-iteration
in RCSD is (for , enumeration simply involves

constellation symbols). The MAP has an enumeration
complexity of , and is obviously a special case of RCSD
when , while Turbo-BLAST has an enumeration
complexity of , the same as that of layer-by-layer detection
of RCSD when . A similar tradeoff can be achieved by
SD by appropriately choosing the search radius and .

IV. SIMULATED PERFORMANCE

Simulations are based on a coded system composed of
a rate-3/4 (133, 171) convolutional code (CC), specified
in the 802.11a Wireless LAN (WLAN) standard [43], and
QPSK/16-QAM/64-QAM modulation with Gray mapping. Th
modulated symbols are spatially demultiplexed onto
transmit antennas. At the receiver, receive antennas
are also assumed and the IDD procedure with 5 iterations
is applied to improve the performance. The demapper per-
forms a typical symbol-to-bit probability conversion, which
enumerates all symbols associated with a particular bit, as
discussed, for example, in [23]. Two channel scenarios are
investigated: for QPSK/16-QAM,a flat, fast-fading (fully in-
terleaved) channel is assumed with Rayleigh distribution; for
64-QAM, a frequency-selective, quasi-static Rayleigh fading
channel is assumed, which has an exponential-power profile
with an delay spread of 150 ns. In the latter case, OFDM
is also assumed with specifications as given in the 802.11a
WLAN standard [43]. The packet-error-rate (PER) is chosen as
the figures of merit, with packet size fixed at 1024 bits.

A. QPSK, Flat Fast-Fading Channel

In Fig. 6, the PER performance of the QPSK-based system
is shown. As a reference, the performance of MAP, as well as
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Fig. 6. MMSE-RCSD for QPSK on flat fast fading channels.

that of Turbo-BLAST detection with both hard and soft deci-
sion feedback, is also shown. When , RCSD1 and
RCSD2 are identical and they are different from BLAST detec-
tion only in their use of soft-decision feedback in interference
cancellation. It is seen that RCSD with even out-
performs hard Turbo-BLAST with a 2.5 dB gain at the PER of

, which comes strictly from the performance advantage of
SDF over HDF. Note that a hard output decoder (e.g., Viterbi)
would be sufficient for HDF, which could result in reduced de-
coding complexity compared to SDF. For QPSK, RCSD per-
forms somewhat better than soft Turbo-BLAST with about a
0.5 dB performance advantage.

Note that the main computational load of the proposed
scheme is proportional to , whereas the overall layer
depth is . Given , increasing the overall depth by
allowing causes the performances of both RCSD1 and
RCSD2 to improve, although RCSD1 seems to benefit more
from the increased . Note that the performance of RCSD1
with approaches the performance with , ,
which has four times the trellis complexity of the former.

For the larger trellis associated with , when increasing
the noncausal depth parameter from to , a similar
performance improvement is observed, with RCSD1 still being
somewhat superior to RCSD2. Finally, RCSD1 with ,

performs asymptotically the same as MAP, but with the
trellis complexity reduced by a factor of 16.

B. 16-QAM, Flat Fast-Fading Channel

In Fig. 7, the PER performance of the 16-QAM-based system
is shown. We will no longer show the performance of the hard
Turbo-BLAST scheme, as its performance is considerably
worse than its soft counterpart and including its PER curve
would overly clutter the plots. It is seen that RCSD with ,

has a 7–dB gain over soft Turbo-BLAST detection
at the PER of . Note that the detection portion of soft
Turbo-BLAST [24] is a linear operation, which is fundamen-
tally inferior to the nonlinear RCSD performance wise. The
latter utilizes both a priori information from the decoder and

Fig. 7. MMSE-RCSD for 16-QAM on flat fast fading channels.

previously detected symbols to successively cancel interfer-
ence, whereas Turbo-BLAST utilizes a priori decoder feedback
only once for interference cancellation. It is obvious that for
higher-order modulation schemes the symbol estimate purely
based on a priori information is not sufficiently accurate.

On the other hand, both RCSD schemes with con-
sistently outperform the corresponding scheme with re-
gardless of the value of . Furthermore, for a given , when
increasing the depth parameter , the performance in general
improves. For a given nonzero , RCSD2 outperforms RCSD1
when but two are comparable when . In particular,
for an error floor appears in RCSD1 at high , but
at the practically meaningful PER level of , there is still
about a 1.5-dB gain compared to . This is consistent with
the analysis in Section III-B and implies that for 16-QAM and
when the complexity requirement is stringent (e.g., receiver im-
plementation for is not allowed), RCSD2 is preferred to
RCSD1.

C. 64-QAM, Frequency-Selective Quasi-Static Channel

In Fig. 8 the PER performance of the 64-QAM-based system
is shown. There is a 6-dB gain associated with RCSD ( ,

) over soft Turbo-BLAST detection at the PER.
Also, as in the 16-QAM case, the performance plots of RCSD1
with clearly show error floors at high SNRs. In contrast,
for a given , RCSD2 with outperforms RCSD1 and
does not exhibit an error floor down to the simulation point. As
shown in Section III-B, if the a priori information from the outer
decoder is utilized for noncausal symbol estimation, as done in
RCSD1 with , the exchanged soft information might be
degraded at high SNRs, especially for large constellations like
64-QAM. However, down to the practically meaningful PER of

, attempting noncausal estimation still outperforms RCSD
with , although the latter does not show any tendency for
an error floor.

We realize that is essential to achieve near-MAP per-
formance, requiring a higher complexity level, especially for
a larger constellation such as 64-QAM. However, we find that
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TABLE I
COMPLEXITY COMPARISON: RCSD VERSUS SOFT SD

Fig. 8. MMSE-RCSD for 64-QAM on frequency-selective quasi-static fading
channels.

RCSD can still do reasonably well with a practical level of com-
plexity. To be more specific, for , , RCSD2 has
its complexity comparable to the canonical layer-by-layer ap-
proach while having a significant gain over BLAST detection,
and is only 1.5 dB away from the performance of RCSD with

, , which requires 64 times higher complexity.
In the remaining portion of the paper, we will compare RCSD

with existing schemes based on only , which is considered
more practical for low-complexity systems.

D. Comparison of Complexity Requirements

In Fig. 9, we show the performance of RCSD with ,
(either RCSD1 or RCSD2, whichever is better), and that

of soft SD with a particular value of that require a similar
for the given PER of . The Turbo-BLAST perfor-

mance is not included, since from previous figures it is clear that
RCSD with consistently has better performance. The per-
formance of MAP (when simulation is feasible) is also shown as
a reference. We set the search radius of SD sufficiently large to
cover points (symbol sequences) with high probability,
while keeping the number of candidate symbol sequences in the
list to be at most . The channels are the same as those
used in Figs. 6, 7, and 8, for QPSK, 16-QAM, and 64-QAM,
respectively.

We are interested in comparing complexity requirements of
RCSD and soft SD. Detailed complexity comparison in general
is difficult as the complexity level depends highly on specific im-
plementation strategies and design goals. However, as implied
earlier and as is to be shown shortly through a representative test
case, the performance and complexity level of RCSD and soft
SD depend largely on the enumeration size.

Fig. 9. Comparison of ML, soft SD, and MMSE-RCSD (� = 0), for
QPSK/16-QAM/64-QAM.

Let us focus on a test case. We choose the 4 4 16QAM case
from Fig. 9, at , where RCSD2 with ,

and SD with have very similar PERs at
about . To obtain soft bit information, required operations
include a search for candidate symbol sequences, symbol a pos-
teriori probability (APP) computation and symbol-to-bit APP
conversion. For convenience, we assume no extra memory is
available to SD, so that its search procedure and symbol APP
computation need to be conducted for each iteration. Therefore,
we focus on per iteration complexity level.

1) Search: We use the total number of nodes (in the generic
tree representation of interfering signals) visited by the end of
search as the complexity measure of the search process. Again,
we emphasize that, although the search for noncausal symbols
in RCSD2 is conducted for each candidate symbol sequence, it
only needs to reach the closest-point without maintaining a can-
didate list as SD, so that eventually a much smaller number of
nodes are visited. We record the average number of visited nodes
through simulations, since it is difficult to find this number an-
alytically. The result is summarized in Table I, which shows
RCSD has much smaller search complexity.

2) Symbol APP Computation: We use the number of real
multiplications as the measure of complexity in APP compu-
tation, since it is usually the most demanding requirement in
implementation.

According to the signal model (1), for each candidate symbol
sequence soft SD needs to compute the log-likelihood function

, which requires
real multiplications for the operations of , , and

, respectively, assuming the value of is known. The
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variable denotes the number of involved symbols at the
th layer. There are altogether 52 real multiplications needed for

each candidate in the list.
For RCSD, the symbol APP computation of a particular layer

is based on 16 candidate symbols since we are focusing on
, and for each possible symbol computation involves up to

layers, along with the soft symbol cancellation.
• Soft Symbol Estimation: For the first three layers, after the

APP computation of each layer, a soft symbol estimate is
obtained and will be used in subsequent computations, as
described right after (7). For example, to obtain and ,
it requires and real multiplications, respectively.
The same complexity is required to obtain ( , ) and
( , ). Therefore, the total number of real multiplications
needed for all layers is .

• APP Computation: Based on (6) (9), the APP for each
candidate symbol can be computed. For example, con-
sider computation of the APP for a symbol in layer-2.
First, using (6) and (7), the log-likelihood function compo-
nent associated with the current-layer observation requires

real multiplications, to perform the ,
and operations. Secondly, and

real multiplications are needed according
to (9) for the log-likelihood function accumulations due
to the two noncausal observations. Note that in (7) the ef-
fort of computing for the detected layer-1 has been ac-
counted for in the soft symbol estimation part, while in
(9) the computations associated with noncausal and
are skipped since these variances are zeros for RCSD2, as
explained at the end of Section II-B-2. So 54 real multi-
plications are needed for each layer-2 symbol APP com-
putation. Repeating this, we see that 33, 46, and 28 real
multiplications are needed for a symbol APP computa-
tion in layer-1, layer-3, and layer-4, respectively. Thus, the
number of real multiplications required for all candidate
symbols is .

The total number of real multiplications required for all
symbol APP computations is , as sum-
marized in Table I.

3) Symbol-to-Bit Conversion: The computational load asso-
ciated with symbol-to-bit conversion (in terms of the APP) can
be examined by going through all candidates in the enumera-
tion list, possibly with max-log approximation. Regardless of
the particular conversion method used, the arithmetic operations
associated with each candidate is the same. Therefore, we only
make the comparison based on the candidate-list size, which is
also given in Table I.

This test case shows definite complexity advantage of RCSD
over SD. In general, however, complexity comparison at the
quantitative level is tricky and depends on the implementation
strategies employed. For example, if the particular implementa-
tion strategy allows a generous use of memory, then the candi-
date list of SD and its symbol APP of each candidate member
can be stored at the first iteration, and no symbol estimation
needs to be done for iterations afterwards [25], in which case
the computational burden of SD is substantially reduced. On the
other hand, it should be noted that the die area of the chip in
very large scale integration (VLSI) depends heavily on the use

of buffer memory, and the memory use is generally minimized
in VLSI designs targeting at volume production. Therefore, our
suggestion of required complexity levels is meant to be largely
qualitative and we leave specific quantitative interpretation of
the required complexity of RCSD and SD to the implementa-
tion engineers. Nevertheless, we feel that it is safe to say that
the proposed RCSD schemes are advantageous over SD in cer-
tain modulation/channel scenarios and implementation environ-
ments that are of practical interest.

V. CONCLUSION

We presented a suboptimal, RCSD scheme well suited to
MIMO systems with layered space-time (or space-frequency)
architecture. The proposed algorithm is based on trellis repre-
sentation of the MIMO signals and a subsequent formulation
of constrained-depth MAP detection, as well as the use of soft
decision feedback (SDF). Decision feedback has been applied
based on decomposition of the MIMO interference in causal
and non-causal parts in the spatial sense. Two different varia-
tions have been suggested for the processing of non-causal in-
terference. The MSE of each layer is computed to analyze the
error propagation effect of the RCSD scheme. The mutual in-
formation between the bit-wise LLR and corresponding coded
bits are compared for the two RCSD variants. Error rate simula-
tions were conducted based on the IDD procedure on different
modulation constellations, and the resulting performance vali-
dated the analysis. Compared with MAP detection, soft SD and
Turbo-BLAST, the proposed RCSD scheme is shown to exhibit
favorable performance and complexity tradeoffs in certain prac-
tical scenarios.
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